
BLUE WATERS SUSTAINED PETASCALE COMPUTING

Blue Waters Overview

Welcome to an overview of Blue Waters

- Our goal is to introduce you to the Blue Waters Project and the opportunities to utilize the resources and services that it offers
- We welcome questions through the live YouTube chat, Slack as well as email <u>help+bw@ncsa.illinois.edu</u>

https://bluewaters.ncsa.illinois.edu/blue-waters

Brett Bode INTRODUCTION

BLUE WATERS

Blue Waters

- Most capable supercomputer on a University campus
- Managed by the Blue Waters Project of the National Center for Supercomputing Applications at the University of Illinois
- Funded by the National Science Foundation

Goal of the project

Ensure researchers and educators can advance discovery in all fields of study

Blue Waters System

Top-ranked system in all aspects of its capabilities

Emphasis on **sustained performance**

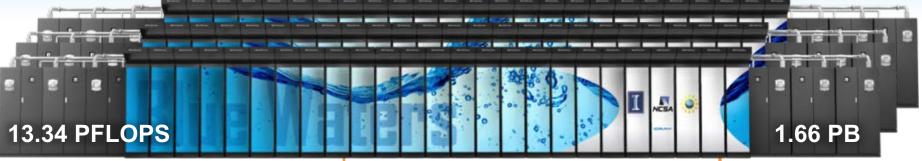
- Built by **Cray** (2011 2012).
- 45% larger than any other system Cray has ever built
- By far the largest NSF GPU resource
- Ranks among **Top 10** HPC systems in the world in peak performance **despite its age**
- Largest memory capacity of any HPC system in the world: 1.66 PB (PetaBytes)
- One of the **fastest file systems** in the world: more than **1 TB/s** (TeraByte per second)
- Largest backup system in the world: more than 250 PB
- Fastest external network capability of any open science site: more than 400 Gb/s (Gigabit per second)

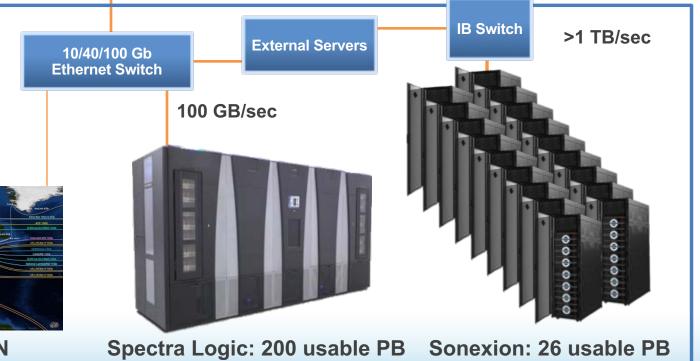
Blue Waters Ecosystem

EOT Education, Outreach, and Training	Petascale A Computing Reso	GLCPC	
	SEAS: Software Engineerin	g and Application Support	Great Lakes Consortium for
Industry partners	User and Produ WAN Connections, Consulting, Operat	Petascale Computing	
Software Visualization, analysis, computational libraries, <i>etc</i> .		Hardware External networking, IDS, back-up storage, import/export, <i>etc</i>	

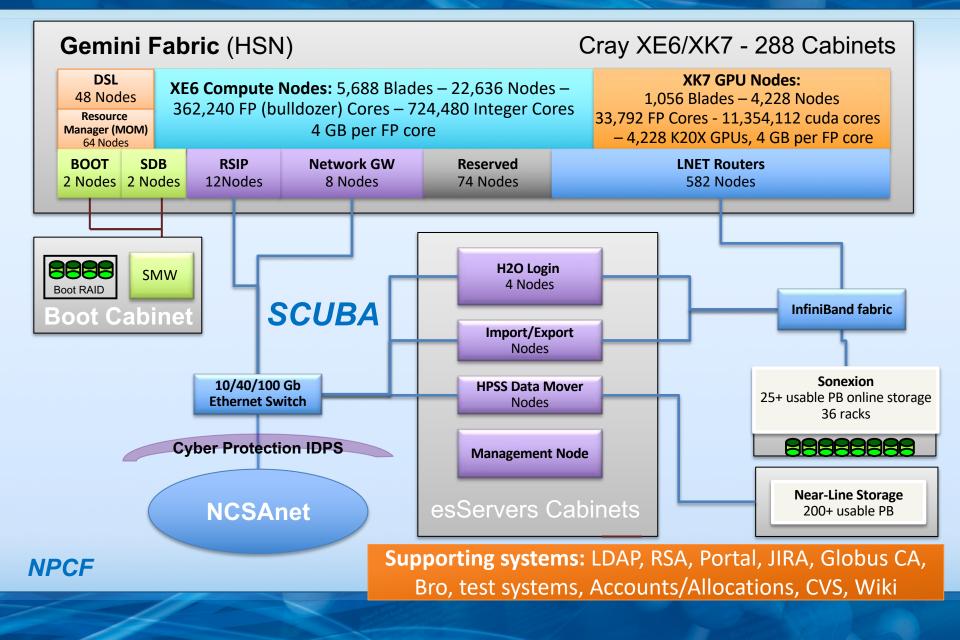
Blue Waters System

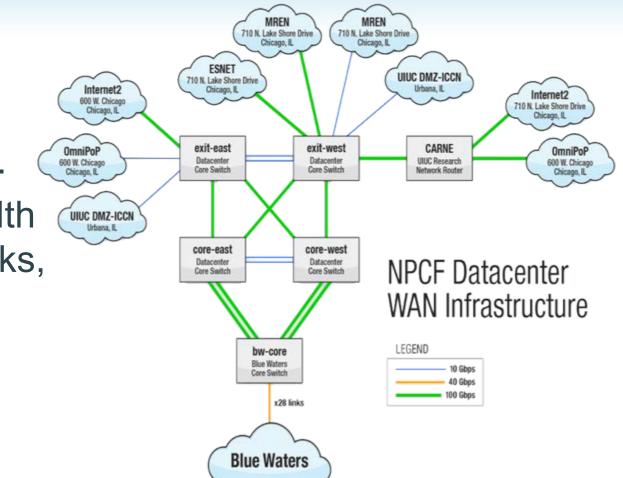
Processors, Memory, Interconnect, Online Storage, System Software, Programming Environment


National Petascale Computing Facility


Blue Waters Computing System

Scuba Subsystem: Storage Configuration for User Best Access


400+ Gb/sec WAN



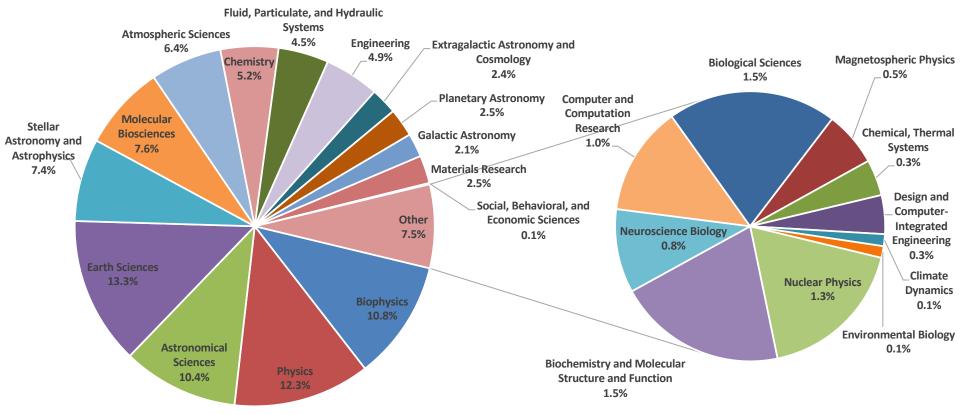
Connectivity

- Blue Waters is well connected.
- Ample bandwidth to other networks, HPC centers, universities.

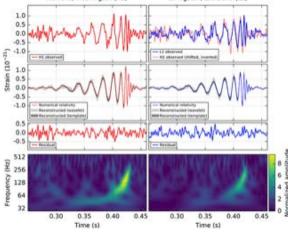
GREAT LAKES CONSORTIUM

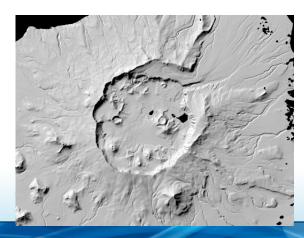
Blue Waters Allocations: ~600 Active Users

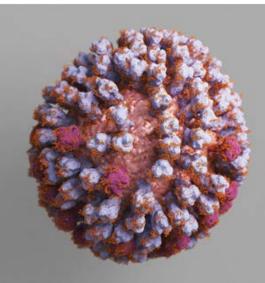
NSF PRAC, 80%

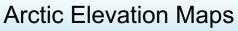

- 30 40 teams, annual request for proposals (RFP) coordinated by NSF
- Blue Waters project does not participate in the review process
- Illinois, 7%
 - o 30 40 teams, biannual RFP
- **GLCPC**, 2%
 - o 10 teams, annual RFP
- Education, 1%
 - Classes, workshops, training events, fellowships. Continuous RFP.
- Industry
- **Innovation and Exploration**, 5%
- Broadening Participation, a new category for underrepresented communities

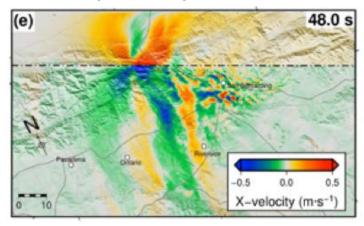
Usage by Discipline and User


Data From Blue Waters 2016-2017 Annual Report




Recent Science Highlights


LIGO binary-blackhole observation verification



160-million-atom flu virus

Earthquake rupture

EF5 Tornado Simulation

Blue Waters Symposium

- **Goal** Build an extreme scale community of practice among researchers, developers, educators, and practitioners
- Unique annual event in June 2018 bringing together a diverse mix
- of people from multiple domains, institutions, and organizations

Strong Technical Program

- Over **150** people attend annually, over **50** PIs
- Over **70** talks on research achievements
- Invited plenary presentations by leaders in the field
- Technology updates and workshops by BW support team
- Posters by more than a dozen graduate students, fellows, and interns

Blue Waters Portal https://bluewaters.ncsa.illinois.edu

Allocations

https://bluewaters.ncsa.illinois.edu/aboutallocations

Documentation

https://bluewaters.ncsa.illinois.edu/documentation

User Support

https://bluewaters.ncsa.illinois.edu/user-support

Blue Waters Symposium

https://bluewaters.ncsa.illinois.edu/blue-waters-symposium

NSF Plans for a Follow-on System

- The funding for a follow-on machine to Blue Waters is currently under review at NSF.
- "Towards a Leadership-Class Computing Facility"
 - https://www.nsf.gov/pubs/2017/nsf17558/nsf17558.htm
 - To deploy a system with **2–3x** the performance of Blue Waters entering service by 9/30/2019.
 - NSF PRAC allocation mechanism to remain the same, the remaining 20% TBD by the winning proposal.

Greg Bauer BLUE WATERS SYSTEM ARCHITECTURE

Blue Waters Compute System

- Low latency network for strong scaling of MPI or PGAS codes. MPI-3 support and lower level access.
- Weak scaling supported by high aggregate bandwidth of 3D torus network topology.

CRA

XE CPU Node Features

- Dual socket AMD "Interlagos" CPUs
- 16 floating point units and 32 cores per node.
- 64 GB RAM per node typical, 96 nodes at 128 GB.
- 102 GB/s memory bandwidth per node.
- Low OS noise for strong scaling.
- Support for MPI, OpenMP, threads, etc.

- One AMD CPU and one NVIDIA K20x GPU per node.
- 32 GB RAM per node typical, 96 nodes at 64 GB.
- Support for OpenCL, OpenACC and CUDA (7.5).
- CUDA MultiProcessService supported.
- RDMA message pipelining from GPU.
- Support for GPU enabled ML and visualization.

Blue Waters Software Environment

Languages	Compilers	Programming Models	IO Libraries	Tools	Optimized Scientific Libraries
Fortran	Cray (CCE)	Distributed Memory	NetCDF	Environment setup	LAPACK
С	Intel	(Cray MPT)	HDF5	Modules	
C++		MPI	ADIOS	Debugging Support Tools	ScaLAPACK
Python	PGI	SHMEM	ADIOS		
UPC	GNU	Shared Memory		Fast Track Debugger (CCE w/ DDT)	BLAS (libgoto)
		OpenMP 4.x	Resource Manager	Abnormal Termination	Iterative Definement
Performance	Debuggers	PGAS &		Processing	Refinement Toolkit
Analysis Cray	Allinea DDT	Global View	Adaptive	STAT	Cray Adaptive
Performance	lgdb	UPC (CCE)		Cray Comparative	FFTs (CRAFFT)
Monitoring and Analysis Tool	Igub	CAF (CCE)	Visualization	Debugger#	FFTW
PAPI	Prog. Env.		Vislt	Data Transfer	Cray PETSc
PerfSuite	Eclipse		Paraview	Globus Online	(with CASK)
Tau	Traditional		YT	HPSS	Cray Trilinos (with CASK)

Cray Linux Environment (CLE) / SUSE Linux

3rd party packaging NCSA supported Cray added value to 3rd party

Support for Python and Containers

- Approx. 20% of Blue Waters users use
 Python.
- We provide over 260
 Python packages and two Python versions.
- Support for GPUs, ML/DL, etc.

- Support for "Docker-like" containers using Shifter.
- **MPI across nodes** with access to native driver.
- Access to GPU from container.
- Support for Singularity coming.

Data Science and Machine Learning

Currently available libraries


- TensorFlow 1.3.0
- In the Pipeline
 - TensorFlow 1.4.x
 - PyTorch
 - Caffe2
 - Cray ML Acceleration

Data challenge: large training datasets

- Example/Research Data on BW
 - ImageNet
- Seeking Datasets for:
 - Natural Language Processing
 - Still looking for data set large enough
 - Biomedical dataset
 - biobank <u>http://www.ukbiobank.ac.uk</u>
- Seeking users interests

Blue Waters Support Model

Blue Waters Partner Consulting

• Assistance with porting, debugging, allocation issues, and software requests.

Advanced Application Support for projects

• Requests are reviewed and evaluated for breadth, reach and impact.

Point of Contact (PoC)

- Major Science teams (such as NSF PRAC awards).
- Tuning, modeling, IO, optimizing application codes.
- Code restructuring, re-engineering or redesign.
- Work plans are reviewed by the Blue Waters project office.

Support for workflows, data movement, visualization.

Blue Waters Staff Expertise

Domain expertise

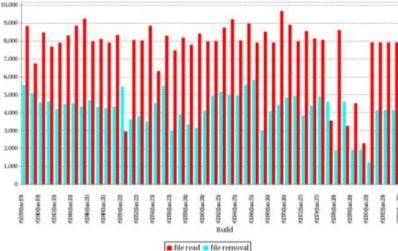
- Bioinformatics
- CFD (Finite Difference and Finite Element Methods)
- Computational Chemistry (NWCHEM, GAMESS US, CHARMM)
- Molecular Dynamics (NAMD, GROMACS, etc.)
- Numerical Methods
- Astrophysics

Computational expertise

- Runtimes
- Charm++
- Einstein Toolkit
- Performance analysis
- Programming models: MPI+X

Jeremy Enos OPERATIONS

Operational Goals

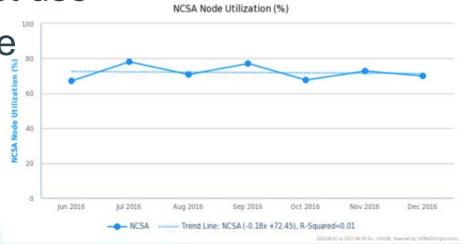

- High performance, high availability
- Job scheduling policy
- Ensure best system utilization
- Enforce appropriate use policy and security

- Regression tests done for software and hardware, performance and function
- Aggressive monitoring and anomaly investigation
- Minimize interference between users

mdtest file metadata performance

- **24/365** on-call staff to service machine
- 7+ day advance notice of scheduled outages

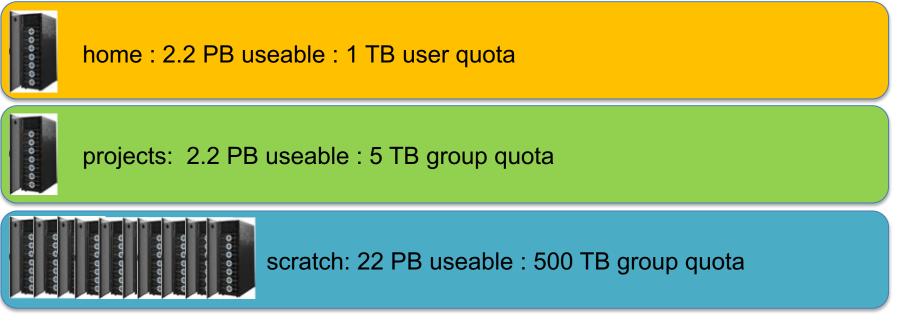
ã


- Retain maximum job submission flexibility
- General scheduling policy favors large jobs
- High, normal, low, and debug queue priority options
- Fairness measures within general policy
- Minimize job turnaround time
- Minimum chargeable unit = 1 node
- GPU and CPU nodes have same charge
- Maximum runtime allowed = 48 hours
- Special requests (longer runtimes, advance reservations, courses, deadlines, etc.)

Ensure Best System Utilization

- Discounts for job submission designed to complement idle system portions
- Job placement by communication profile
- Provide guidance for best use
- Investigation of disruptive workflows
- Investigation of inconsistent runtimes

- Perfect, zero compromise track record
- State-of-the-art IDS, keystroke logging
- Two-factor authentication
- Hierarchical, **unidirectional privilege model**
- Security team also monitors for appropriate use for scientific purpose
- Extreme priority placed on security patches


Michelle Butler DATA STORAGE AND MANAGEMENT

Online Storage


- Cray **Sonexion** with **Lustre** for all file systems.
- All visible from compute nodes.
- Scratch has 30 day purge policy in effect for both files and directories.

Nearline Storage (HPSS)

- 200 PB of usable storage space.
- Accessed via Globus Online graphical or command line interfaces.
- Preserves projects vs. home distinction

Globus Online

GUI, API and command line interfaces

Globus Connect Servers

- Very high bandwidth
- Asynchronous
- Very parallel
- Specialized resources for endpoints

Globus Connect Personal

• For local resources (laptop, workstation) that don't have server running.

Rob Sisneros SCIENTIFIC VISUALIZATION

Supporting Science on Blue Waters

Software

- Installation + maintenance
- Data preparation
- Usage/Training

Research

- Is this in my data?
- This is complex, can I show it?
- Visualization for HPC

Outreach: Getting data out there

How to Analyze in Parallel

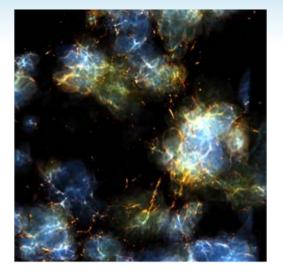
- Provides aggregation for meshes
- A mesh may be composed of large numbers of mesh "blocks"
- Allows data parallelism

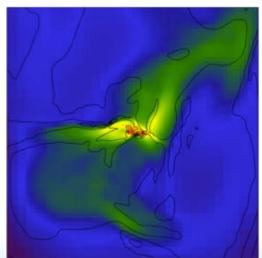
Supported Visualization Software

Specialized

yt

General, scalable Paraview and Vislt


Other IDL, imagemagick, other


Visualization webinars available on YouTube Blue Waters webinar on *yt* on February 28

BLUE WATERS SUSTAINED PETASCALE COMPUTING

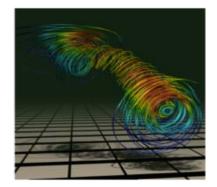
yt

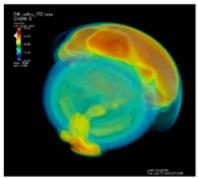
- Developed to analyze Astrophysics data (Enzo)
- Developed in Python, uses NumPy, Matplotlib, MPI4PY
- Typical analysis
 - Write scripts to derive values
 - Find Halos
 - Create plots
 - Run in batch
- Has in situ support

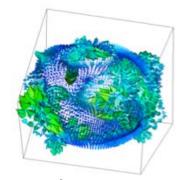
BLUE WATERS SUSTAINED PETASCALE COMPUTING

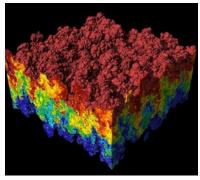
Vislt

Paraview

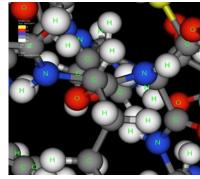

Scalable Scaled > 100K cores Offer interactive client/server mode Can operate in batch mode In situ support Rich set of data operators Native support for many file formats



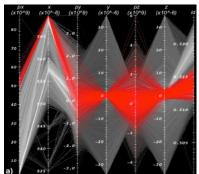

Visualization with Vislt



Streamlines



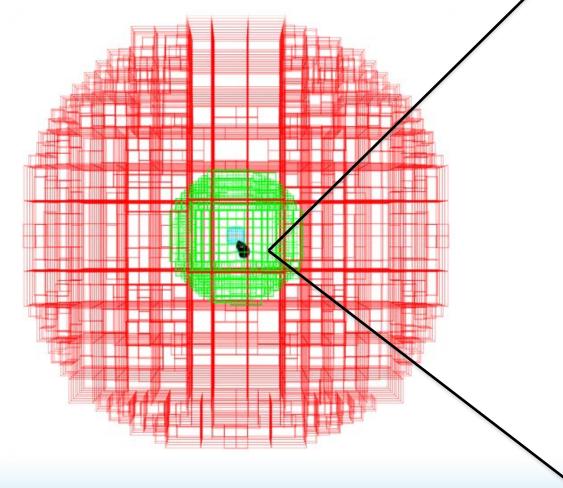
Volume Rendering



Vector / Tensor Glyphs Pseudocolor Rendering

Molecular Visualization

Parallel Coordinates



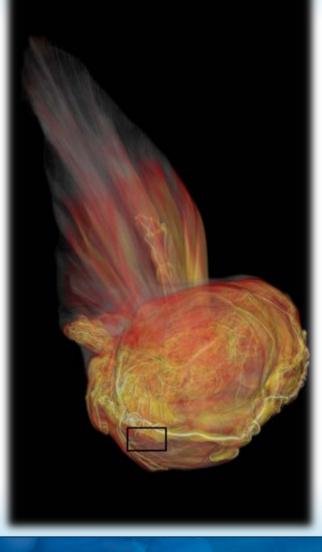

NCSA

Image Resolution/Quality

NCSA

Maxim Belkin BLUE WATERS TRAINING

Target Audience

Current and future **Blue Waters** users and partners

Training Goals

- Train new users on how to better utilize Blue Waters resources
- Train advanced users on new and emerging technologies (HPC container solutions, data analytics, heterogeneous programming, etc.)

Blue Waters Training

Webinars

- Applied and general topics
- Informational and hands-on sessions
- Feel free to request or suggest a topic!
- Great opportunity to get publicity!

https://bluewaters.ncsa.lllinois.edu/webinars

We support partners' training sessions and events

- Hackathons
- Distributed classrooms

Let us know your needs: **bw-eot@ncsa.lllinois.edu**

Blue Waters Training

Upcoming (hands-on) workshops and events

- Machine Learning in HPC
- Containers in HPC
- GPU Hackathon (August)
- Python in HPC (planned)

Let us know your needs: bw-eot@ncsa.lllinois.edu

Scott Lathrop EDUCATION AND BROADENING PARTICIPATION ALLOCATIONS

Education Allocations

- Support the preparation of the **national workforce** with expertise in **petascale computing**.
- Projects may be requested for **up to one year**, although many will typically cover a one- to two-week period or a semester.
- Please apply at least one month before the allocation is needed.
- Requests are generally limited to at most **25,000 node-hours**
- Possible projects:
 - Focus on large-scale datasets and optimization of I/O operations.
 - Developing and testing of codes that use advanced methods, languages and tools
 - **Optimizing** and **scaling** of a community code to a large-scale simulation.
 - **Optimizing libraries** and tools that leverage architecture features.
 - Focusing on the **unique scale** and scope of the **Blue Waters system**.
 - Use of large-scale computation and data analytics.

Broadening Participation Allocations

- This is a new category open to faculty and research staff at US academic institutions who have not previously had a Blue Waters allocations and who are among underrepresented communities
- This is a new initiative being presented to NSF as a "prototype" program that we hope will be sustained on future NSF-supported systems.
- The guidelines for submissions will be announced in near future.

Broadening Participation Allocations

- Minority Serving Institutions
- Institutions within EPSCoR jurisdictions
- PIs who are women, underrepresented minorities, or people with disabilities
- Fields of study that are traditionally underrepresented in HPC, such as humanities, arts, and social sciences
- Graduate or undergraduate students are not eligible
- Co-PIs and collaborators from other institutions
- First time Blue Waters Allocations Pls

- Requests may be up to 200,000 node-hours for one year.
- Projects will be judged based on
 - scientific merit
 - suitability for Blue Waters
 - demonstrated need for the capabilities of Blue Waters.
- Progress reports will be required for all awards

SUMMARY

Blue Waters Summary

Outstanding Computing System

- The largest installation of Cray's most advanced technology
- Extreme-scale Lustre file system with advances in reliability/maintainability
- Extreme-scale archive with advanced RAIT capability

Most balanced system in the open community

- Blue Waters is capable of addressing science problems that are memory, storage, compute, or network intensive or any combination.
- Use of innovative technologies provides a path to future systems

NCSA is a leader in developing and deploying these technologies as well as contributing to community efforts.

- General information about Blue Waters: https://bluewaters.ncsa.illinois.edu/blue-waters
- For assistance with technical questions about the computing system, send email to help+bw@ncsa.illinois.edu
- We look forward to your participation in utilizing the **Blue Waters resources** and **services**.